Directed liquid phase assembly of highly ordered metallic nanoparticle arrays.

نویسندگان

  • Yueying Wu
  • Nanyi Dong
  • Shaofang Fu
  • Jason D Fowlkes
  • Lou Kondic
  • Maria A Vincenti
  • Domenico de Ceglia
  • Philip D Rack
چکیده

Directed assembly of nanomaterials is a promising route for the synthesis of nanoscale materials. In this paper, we demonstrate the directed-assembly of highly ordered two-dimensional arrays of hierarchical nanostructures with tunable size, spacing and composition. The directed assembly is achieved on lithographically patterned metal films that are subsequently pulse-laser melted; during the brief liquid lifetime, the pattened nanostructures assemble into highly ordered primary and secondary nanoparticles, with sizes below that which was originally patterned. Complementary fluid-dynamics simulations emulate the resultant patterns and show how the competition of capillary forces and liquid metal-solid substrate interaction potential drives the directed assembly. As an example of the enhanced functionality, a full-wave electromagnetic analysis has been performed to identify the nature of the supported plasmonic resonances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Self– versus Directed– assembly of Nanoparticles via Pulsed Laser Induced Dewetting of Patterned Metal Films

A nanoscale, synthetic perturbation was all that was required to nudge a natural, self–assembly process toward significantly higher order. Nanolithography was used to impose the perturbation which ultimately led to an organized nanoparticle array. Specifically, liquid–phase pulsed laser induced dewetting (PLiD) was used to transform metallic thin film strips into nanoparticle arrays. Initially,...

متن کامل

Revealing the interfacial self-assembly pathway of large-scale, highly-ordered, nanoparticle/polymer monolayer arrays at an air/water interface.

The pathway of interfacial self-assembly of large-scale, highly ordered 2D nanoparticle/polymer monolayer or bilayer arrays from a toluene solution at an air/water interface was investigated using grazing-incidence small-angle scattering at a synchrotron source. Interfacial-assembly of the ordered nanoparticle/polymer array was found to occur through two stages: formation of an incipient random...

متن کامل

Direct oxidation of benzene to phenol in liquid phase by H2O2 over vanadium catalyst supported on highly ordered nanoporous silica

Vanadium supported on highly ordered nanoporous silica (VOx-LUS-1) was synthesized and characterized by XRD, Nitrogen adsorption‑desorption isotherms and UV-visible spectrophotometer. Direct oxidation of benzene to phenol in liquid phase by H2O2 peroxide were examined by using various solvents (methanol, acetone, acetic acid, acetonitryl). The maximum yield (25%) and selectivity (73%) of the ph...

متن کامل

Hierarchical nanoparticle ensembles synthesized by liquid phase directed self-assembly.

A liquid metal filament supported on a dielectric substrate was directed to fragment into an ordered, mesoscale particle ensemble. Imposing an undulated surface perturbation on the filament forced the development of a single unstable mode from the otherwise disperse, multimodal Rayleigh-Plateau instability. The imposed mode paved the way for a hierarchical spatial fragmentation of the filament ...

متن کامل

Directed assembly of one- and two-dimensional nanoparticle arrays from pulsed laser induced dewetting of square waveforms.

The directed assembly of arrayed nanoparticles is demonstrated by dictating the flow of a liquid phase filament on the nanosecond time scale. Results for the assembly of Ni nanoparticles on SiO2 are presented. Previously, we have implemented a sinusoidal perturbation on the edge of a solid phase Ni, thin film strip to tailor nanoparticle assembly. Here, a nonlinear square waveform is explored. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ACS applied materials & interfaces

دوره 6 8  شماره 

صفحات  -

تاریخ انتشار 2014